M1 .B	[1]
M2 .D	[1]
M3. A	[1]
M4.D	[1]
M5.C	[1]
M6. B	[1]

(a) (i)

M7.

Isomer 1 either order

C1 C1 C1 C1 C1

C1 C1 C1

C1 C1 C1

C1 C1

[credit
$$H-C=C-H$$
]

(ii) restricted <u>rotation</u> OR no <u>rotation</u> OR cannot <u>rotate</u> (1)

3

(b) (i) Mechanism:

$$\begin{array}{c}
\stackrel{\Theta}{\to}_{HO:} \stackrel{(\mathbf{1})}{\to}^{M1} \\
 \text{CH}_3 - \text{CH} - \text{CH}_3 \longrightarrow \text{CH}_3 - \text{CH} - \text{CH}_3 + \ddot{\text{Cl}}^{\Theta} \\
 \stackrel{C}{\to}^{O} \stackrel{(\mathbf{1})}{\to}^{O} \\
 \text{Credit M1 for } \stackrel{\Theta}{\to}_{HO:} \longrightarrow \text{CH}_3 - \text{CH} - \text{CH}_3
\end{array}$$

M1 and M2 independent

Curly arrows <u>must</u> be from a bond or a lone pair

Do not penalise sticks

Penalise M1 if Na OH precedes (penalise this once)

Penalise incorrect δ + δ – for M2

Penalise + on C atom for M2

Only allow M1 for incorrect haloalkane

Role of the hydroxide ion: nucleophile (1)
electron pair donor
lone pair donor

NOT nucleophilic substitution

(ii) Mechanism:

$$\begin{array}{c}
 & \text{HO:} \\
 & \text{M2} \\
 & \text{HO:} \\$$

Only allow M1 and M2 for incorrect haloalkane unless RE on (i)

+ charge on H on molecule, penalise M1

M3 independent

M2 must be to correct C–C

M1 must be correct H atom

Credit M1 and M2 via carbocation mechanism

No marks after any attack of C [⊕] by OH

Role of the hydroxide ion: base (1) proton acceptor accepts H⁺

[10]

7

If wrong carbocation, lose structure mark If wrong alkene, lose structure mark

credit secondary carbocation here if primary carbocation has been used in (i)

Ignore attack on this carbocation by Bro

5

(b) (i) Structure:

$$\begin{array}{c} \text{OH} \\ \text{I} \\ \text{H}_3\text{C} - \text{CH} - \text{CH}_3 \end{array} \textbf{(1)} \qquad \begin{bmatrix} \text{in sist on} \\ \text{C} - \text{OH bond} \end{bmatrix}$$

No credit for propan-1-ol even when named correctly Credit propane-2-ol

Name: propan-2-ol (1)
Not 2-hydroxypropane

(ii) Name of mechanism: nucleophilic substitution (1) (both words) (NOT S_N1 orS_N2)

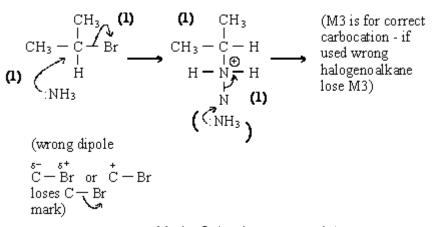
Mechanism:

arrow (1)
$$\nearrow$$
 Br
 $H_3C - CH - CH_3 \longrightarrow CH_3CH(OH)CH_3 + Br\Theta$
 $\Theta_{HO:}$ (1) arrow from
 $(M2)$ lone pair

penalise incorrect polarity on C - Br (M1) Credit the arrows even if incorrect haloalkane If $S_{\rm n}1$, both marks possible

5

- (c) (i) elimination (1)
 Ignore nucleophylic elimination
 Penalise electrophilic elimination
 - (ii) base (1)


 OR proton acceptor

 NOT nucleophile (base)

[12]

2

M9. (a) Name of mechanism: nucleophilic substitution **(1)** Mechanism:

Marks S_N1 using same points ∴ M2 requires

$$CH_3 = \begin{matrix} CH_3 \\ C \\ C \\ \\ C \end{matrix}$$

5

(b) Role of potassium hydroxide: Base (1) Mechanism:

Mark E1 using same points

: M2/M3

[10]

5

M10.C

[1]

M11. (a) Alcohol: Reaction = Substitution (/ hydrolysis) **(1)** *Ignore reference to nucleophilic, but electrophilic give zero*

Alcohol: Role = nucleophile (/ lone pair donor) (1)

Alkene: reaction = elimination (1)

Ignore ref to nucleophilic or electrophilic

Alkene: base (/ proton acceptor) (1)

If no indication of order in (a) assume as in question.

If order is wrong can still score 'role' mark.

4

(b) Alcohol: Role = butan-2-ol (1)

Not 2-hydroxybutane or but-2-ol

Appropriate structure for CH₃CH(OH) CH₂CH₃(1)

Brackets not essential

Page 7

S_N1 version

S_N2 version

 $\overset{\delta +}{C} \overset{\delta -}{-} \overset{\delta -}{Br}$ bond is polar

C-Br bond is polar (1)

Lone pair of OH-

C-Br bond breaks (1)

Attacks the C⁵+

forming carbocation / carbonium ion (1)

M1 can be scored from a diagram, M2 and M3 from written explanation only

5

(c)

If but-2-ene not given here it may be obtained from cis / trans isomer

H lost from different carbon atoms (1)

H removes from C¹ and C³ to give two isomers (1)

Draws clear Cis and trans isomers for but-2-ene

Can score these marks from a diagram

$$CH_3$$
 $C=C$ CH_3 CH_3 CH_3 CH_3

[17]

8

Page 8